Neumann Contractors has over 50 years’ experience in contract dredging and dredge manufacture. Our first dredge was built in the late 1950’s for mineral sand recovery. Since then we have built many dredges, both for external sale and for our own contracting fleet.

These dredges are high technology cutting and recovery machines with a well-earned reputation for performance in port construction, channel maintenance, mining and land reclamation.

Neumann dredges are de-mountable and can be cost effectively transported to remote sites around the world.

Dredges have been designed & manufactured for countries such as Russia, Canada, Indonesia, Papua New Guinea, Saudi Arabia, China, Pakistan, India and Jordan. These dredges have been successfully used for the removal of sand, gravels, clays, coral, slimes, weathered rock and mine tailings.

Operational expertise built on contract dredging experience enables us to constantly improve our equipment. This culture of innovation gives us the edge as dredging partners of choice.
Vessel Name: **Nu Endeavour**

Registration Number: **9264QE**

Trading Name: **DRG006**

Length .. 34.78m

Builder .. Neumann Equipment

Nominal Production Rate: 650m³/hr

Total Horsepower: ... 1,950 hp

Horsepower on Pumps: 1,400 hp

Pipeline Diameter: .. 450 mm

Maximum Digging Depth: 15 metres

Hull Material .. Steel

Superstructure Material Steel/Aluminium

Gross Weight .. 220 Tonnes
Vessel Name: **Nu Bounty**

Registration Number: **25128QE**

Trading Name: **DRG007**

Length: 41.30m

Builder: Neumann Equipment

Nominal Production Rate: 650m³/hr

Total Horsepower: 1,950 hp

Horsepower on Pumps: 1,400 hp

Pipeline Diameter: 450 mm

Maximum Digging Depth: 22 metres

Hull Material: Steel

Superstructure Material: Steel/Aluminium

Gross Weight: 240 Tonnes
Vessel Name: **Nu Compact**
Registration Number: **25013QE**
Trading Name: **DRG008**

Length (short configuration): 17.53m
Length (extended configuration): 27.53m
Builder: Neumann Equipment
Nominal Production Rate: 220m³/hr
Total Horsepower: 850 hp
Horsepower on Pumps: 500 hp
Pipeline Diameter: 300 mm
Maximum Digging Depth (short configuration): 8 metres
Maximum Digging Depth (extended configuration): 15 metres
Hull Material: Steel
Superstructure Material: Steel/Aluminium
Vessel Name: **Nu Enterprise**
Registration Number: **25013QE**
Trading Name: **DRG009**

Length: .. 12.0m (18.0m LOA)
Builder: .. Neumann Equipment
Nominal Production Rate: 125m³/hr
Total Horsepower: .. 290 hp
Horsepower on Pumps: 230 hp
Pipeline Diameter: ... 250 mm
Maximum Digging Depth: 7.5 metres
Hull Material: ... Steel
Superstructure Material: Steel
Gross Weight: ... 32 Tonnes
Length (Hull): ... 11.3m
Builder: .. Neumann Contractors
Engine: .. Cummins QSC8.3
Total Horsepower: 305 hp
Horsepower at Pump: 275 hp
Slurry Pump: GIW KSB LCC-M 200-610
Pipeline Diameter: .. 250 mm
Maximum Dredging Depth: ... 6.5 metres (extendable)
Hull Material: .. Steel
Superstructure Material: Steel/Aluminium
Gross Weight: ... 23 Tonnes

EASILY TRANSPORTED TO SITE:
When dismantled, this unit is transportable in 2 x 40’ open top shipping containers to provide cost-effective mobilisation logistics.
Vessel Name: **Nu Kathleen**
Registration Number: **AGE080C**
Trading Name: **DRG001**

Length: 9.30m
Builder: Neumann Equipment
Nominal Production Rate: 50m³/hr
Total Horsepower: 275 hp
Horsepower on Pumps: 200 hp
Pipeline Diameter: 150 mm
Maximum Digging Depth: 6.5 metres
Hull Material: Steel
Superstructure Material: Steel/Aluminium
Gross Weight: 15 Tonnes
During the period in which Neumann Contractors has been developing and upgrading dredges it was recognised that the support equipment must also be capable of undertaking larger scale projects.

Booster Stations

Neumann Contractors currently has several booster stations capable of working with any of the dredges. These boosters range in size from 375 Hp to 2000 Hp.

All boosters have been sound conditioned to levels which comply with EPA noise level criteria.

Boosters can either be pontoon mounted or land based. Telemetry communications enable monitoring and control from the dredge operator’s console.

Pipe Handling Equipment

Neumann Contractors has a range of late model pipe handling equipment for pipe handling on shore. Other equipment such as dozers and excavators needed for bunding etc are sourced as required.

Workboats and Barges

Neumann Contractors has a range of support vessels and work boats in 2C, 2D and 2E Marine Survey. We also hire in work vessels as required. We also have various lifting and fuelling barges available to service project requirements.

-Bund removal-
Project Profile: *Ok Tedi Dredging*

Principal: Ok Tedi Mining Limited
Location: Ok Tedi Mine, Papua New Guinea

Dredge Nu Explorer was specifically built to enable simple and cost-effective transport to the most remote locations. Able to fit into two standard 40 foot open top containers, Nu Explorer was dispatched to the Ok Tedi mine, situated at an elevation of 1700m in the remote Western Highlands of PNG.

The task of mobilisation involved road transport, shipping, transhipment and further road transport for the final leg up to the site. The dredge’s relatively light weight and standard containerisation made the logistics of this exercise far cheaper and simpler.

The dredging task involved shifting a large volume of pyritic concentrate which had been temporarily stored in two dams. The material was pumped by the dredge into a circuit for further handling.

Nu Explorer is fitted with a 240hp Cummins diesel, an efficient and robust GIW slurry pump, and a hydraulically operated winching system. The dredge’s straightforward mechanical design coupled with essential instrumentation such as slurry flow meter make it an efficient and cost-effective slurry pumping unit.

Nu-Explorer – Cutter Suction Dredge
- **Length:** 11.3 m
- **Pipe Dia.:** 250 mm
- **Gross Weight:** 23 tonne
- **Digging Depth:** 6.5 m
Project: **Bundaberg Port – Swing Basin, Berths and Inner Reach Dredging**

Principal:
Gladstone Ports Corporation

Location:
Bundaberg, Qld, Australia

Scope of Work
In January 2013, the Port of Bundaberg was significantly impacted by flooding, which caused unprecedented siltation in the port channel, swing basin and berth pockets. Apart from the unprecedented siltation event in the channel, the port also experienced major scouring and deepening of the river bed along significant sections of the toe of the northern training rock wall. This has led to the development of deep trenches along the toe of the wall which has threatened the stability of the wall.

As part of an overall dredging strategy to return the Port of Bundaberg to normal operating depths, dredging of approximately 400,000 m³ from the Swing Basin, Berths, Departure and Inner Reach of the Channel was conducted using a 450mm cutter suction dredge. The dredged material was pumped via 1500m of floating pipeline to a spreader barge which placed the material in designated areas along the toe of the Port’s northern rock training wall. This project provided the Port with the dual benefits of improving port clearance depths for shipping, and stabilising the base of the northern training wall.

The project was completed on a 24 hour, 7 day per week basis.

Innovations
- Use of spreader barge to place material and stabilise over 2000 lineal metres of the northern rock training wall
- Use of a barred Bucketwheel to exclude oversize material from the pumping system

Challenges
- Post flood debris and obstructions in the dredge area – 3 yachts were amongst the finds
- Dredging unpredictable material – coarse sand, gravel, cobbles and boulders.
- Wear and tear on machinery and equipment.
- Strict dredging and fill tolerances.
- Interfacing with shipping and other marine vessels.

Dredge: Nu-Endeavour – Cutter Suction Dredge
- Length: 34.5 m
- Gross Weight: 201 tonne (dredge)
- Pipe Dia.: 450 mm
- Digging Depth: 2.5 – 15.0 m

Spreader Barge 1
- Length: 24.8 m
- Gross Weight: 82 tonne
- Pipe Dia.: 450 mm
Project: *Ernest Henry Mine – Tailings Dredging*

Principal:
Ernest Henry Mining (Xstrata Copper)

Location:
Near Cloncurry, Qld, Australia

Our 300mm CSD Nu Compact has been commissioned by Ernest Henry Mining to remine tailings from the Tailings Storage Facility to recover magnetite. Nu Compact pumps the reclaimed tailings via a 1000 metre long HDPE pipeline directly into a process circuit in which the magnetite is concentrated.

Scope of Work

Supply and operate dredging equipment on a 24/7 basis. Dredge and pump a consistent feed density to the processing plant.

Innovations

The dredge is fitted with an RTK navigation system to ensure the mining plan is followed accurately. Flow and density meters are fitted to the slurry line to help ensure a steady tonnage is pumped into the magnetite circuit. In addition, slurry density control plates are fitted to the suction pipe to assist density control.

<table>
<thead>
<tr>
<th>Dredge</th>
<th>Nu-Compact – Cutter Suction Dredge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>26.8 m</td>
</tr>
<tr>
<td>Gross Weight</td>
<td>75 tonnes</td>
</tr>
<tr>
<td>Pipe Dia.</td>
<td>300 mm</td>
</tr>
<tr>
<td>Digging Depth</td>
<td>2.0 – 8.0 m</td>
</tr>
</tbody>
</table>
Project: **Townsville Marine Project – Harbour Dredging**

Principal:
Port of Townsville Limited

Principal Contractor:
Townsville Marine Precinct Alliance (Port of Townsville & Laing O’Rourke)

Location:
Townsville, Qld, Australia

Stage 1 of the Townsville Marine Precinct was an $88 million dollar extension of the Port of Townsville, designed to establish a world class facility for marine related industries.

This was a design and construct project completed as an alliance with the Port of Townsville Limited and Laing O’Rourke (LORAC).

Scope of Work:

Neumann Contractors scope included the dredging of approx. 30,000m³ from the Ross River Channel to clear shoaling and using this material for initial land reclamation, and the dredging of 410,000 m³ of hard and very hard clays of up to 400 Kpa from the new marina basin. The dredged material was pumped up to 700 metres and used for land reclamation purposes.

The operation was completed on a 24 hour, 6 day a week basis.

Innovations:

Neumann Contractors had been working on an experimental Inline Lime Injection System (ILIS) that mixed Ag Lime to the dredged material whilst still in the dredge slurry pipeline. The ILIS was set up on the project for injecting the lime at a predetermined rate which then mixed with the PASS materials being dredged.

After some initial trials, the ILIS proved to be successful in injecting the predetermined amount of lime at the required dosing rate into the dredge pipeline for neutralisation of PASS materials that were dredged from the Marina basin.

Challenges:

- Dredging stiff, very stiff and hard clays.
- Coordinating dredging activities with other contractors.
- Working in partially open waters during most of the project.
- Completing the dredging programme on time whilst removing difficult materials.

Nu-Endeavour – Cutter Suction Dredge

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (LOA)</td>
<td>39.6m</td>
</tr>
<tr>
<td>Gross Weight</td>
<td>220tonne</td>
</tr>
<tr>
<td>Pipe Dia</td>
<td>450mm</td>
</tr>
<tr>
<td>Digging Depth</td>
<td>15.0m (max)</td>
</tr>
</tbody>
</table>
Neumann Contractors were engaged as the dredging contractor for the Botany Bay pipeline crossing which was part of the construction of Sydney’s de-salination plant at Kurnell, Southern Sydney.

When completed water from the desalination plant will be piped to the City Water Tunnel at Erskineville. This is part of the Potts Hill Water system, which services areas south of Sydney Harbour, to Bankstown in the west and Sutherland in the south.

Scope of Work:

- Mobilisation to site of the Nu Bounty and Nu Endeavour, 2000 hp booster station, 2 x purpose built spreader barges, 3600m of 18” pipeline and multiple support vessels.
- The dredging of a berth pocket & navigation channel on the Kyeemagh foreshore to provide marine access to the shore based staging area. This involved dredging of approx. 70,000 m³ and pumping the material 2.7 kms to a temporary underwater storage area.
- Dredging of the pipeline trench and concurrently backfilling of the trench post pipe lay across Botany Bay to a +/- 200mm vertical tolerance. The pipe laying programme required 120 lineal metres of trench to be dredged and backfilled per day. The volume of material involved to meet the programme required both the Nu Bounty and Nu Endeavour to be engaged on site. The trenching and pipe laying was undertaken with both Nu Endeavour and Nu Bounty, the pipe lay barge and both spreader barges working “in train” together working across Botany Bay. The pipeline trench was 6,970 metres long, starting from Kyeemagh on the northern side of Botany Bay finishing at Kurnell on the south west side of Botany Bay. The design of the pipeline trench required 710,000 m³ of material to be dredged and backfilled during this phase of the project.

This part of the project required significant interfacing between the various marine operations and was undertaken on a 24/7 basis.
Project: **Sydney Water Desalination Project – Bay Crossing**

(continued...)

- Backfilling of the final 1,500 lineal metres of trench, post pipe lay, dredging 220,000 m³ of material from a temporary underwater storage location.
- Detailed dredging for removal of tunnel boring machines.
- Dredging of 70,000 m³ for the back filling and restoration of Kyeemagh berth pocket.

Challenges:
- Strict environmental limitations on noise, turbidity, sedimentation and waste.
- High profile project within densely populated residential area.
- Strict and critical tolerances on completed works for pipe lay operations.
- Sudden and extreme changes in weather and seastate conditions on Botany Bay.
- Strict program of works.
- Interfacing the dredging activities with the pipe laying activities in a concurrent operation.

Outcomes:
- The dredging works successfully completed in December 2009 well within construction programme.
- Neumann Contractors recorded zero LTI’s during the project.

Dredge Specifications:

Nu Endeavour – Cutter Suction Dredge
- Length: 34.5 m
- Gross Weight: 220 tonne
- Pipe Dia.: 450 mm
- Digging Depth: 15.0 –

Nu Bounty – Cutter Suction Dredge
- Length: 34.5 m
- Gross Weight: 240 tonne
- Pipe Dia.: 450 mm
- Digging Depth: 15.0 –

Spreader Barge 1
- Length: 24.8 m
- Gross Weight: 82 tonne
- Pipe Dia.: 450 mm

Spreader Barge 2
- Length: 24.8 m
- Gross Weight: 82 tonne
- Pipe Dia.: 450 mm
Project: **Penrith Lakes – Tailings Dredging**

Principal:
Penrith Lakes Development Corporation

Location:
Penrith, NSW, Australia

The project involved dredging of approximately 1,300,000 m³ of sand, silts and clays from a central tailings storage facility to a land reclamation site 4.4 km away. The materials are being placed in a manner which enabled the coarser fractions of the tailings to be separated from the silts and clays. This methodology allowed the coarser material to remain in the reclamation area where it was placed as a level one fill. The fine material was picked up with the tailwater from the reclamation site and pumped to a purpose built tailings facility adjacent to the reclamation.

A key objective of the project was the creation of enough volume in the central tailings storage facility to enable continued operation of the quarry processing plants. Also, the material dredged was used to increase the amount of land available at the Penrith Lakes site for future urban development as an end use for the site after completion of the quarry activities.

Scope of Work:
- Establishing a pipeline from the central tailings storage facility to Farleys Bay, a distance of 4,400 metres.
- Set up and maintenance of a Tailwater system to pump the fine material from the reclamation site.
- Establishment of a 1500 metre return water system to maintain adequate water levels for the dredge working in the central tailings facility.
- Dredge 1,300,000 m³ of sand, silts and clays.
- Separation of tailings into two divided areas of Farleys Bay. The eastern storage area for the coarser materials and the western storage area for silts and clays.
- Compacting of coarser tailings for future urban development.

Challenges:
- Ensuring that the project was carried out with minimal disruption to the effectiveness of existing earthworks being carried out at the site.
- Controlling the separation process of coarse and fine materials.
- Ensuring all work activities were undertaken in accordance with the mine sites OHS&E requirements.

Dredge

Nu-Endeavour – Cutter Suction Dredge

- **Length:** 34.5 m
- **Gross Weight:** 220 tonne
- **Pipe Dia.:** 450 mm
- **Digging Depth:** 2.5 – 15.0 m
Neumann Contractors were engaged as dredging contractors for McConnell Dowell for the dredging works to construct a new tug boat berthing area for Port Kembla Ports. The new tug berth area is to protect the tugs from extreme weather conditions by the means of extended breakwater out into the existing harbour. Approximately 30,000 cubic meters of stiff clays and a high percentage of rocks and gravel were pumped into the deposition area at the southern end of the harbour. The deposition area required capping layer over contaminated material.

Scope of Work:
- Mobilise to site the 18” Neumann Dredge *Nu Bounty*, a Spreader Barge, 1,450 m of pipe line and associated equipment.
- Dredge 30,000 cubic meters of material
- Dredging depth of -7.0 meters with a dredging tolerance of – 200mm / 0 above and -8.0 metre trench for a breakwater.
- Deposition area to be filled to a tolerance with a capping layer over contaminated materials.

Challenges
- Material type stiff clay, gravels and rocks throughout dredge cut area
- Strict dredging tolerances
- Environmental limitations [turbidity]
- Weather and sea state conditions.

Outcome
Despite the difficult material type and operating conditions, the dredging works were completed to tolerance and without any environmental issues.
Project: Lake Illawarra Channel Entrance Dredging

Principal: NSW Department of Commerce

Location: Lake Illawarra, NSW, Australia

The Lake Illawarra project involved the dredging of the channel entrance to create a 1050m long x 100m wide channel. Sand dredged from the entrance was used for beach nourishment at the southern end of Warilla beach, approx. 1.5 kms away. Additionally, a sand island was to be created as a roosting area for local and migratory bird life.

The aim of the entrance expansion was to help address and resolve issues of poor water quality within the lake. The quality of water had diminished due to a combination of development, introduction of nutrients and the overall constrictive nature of the entrance channel. Creating a larger entrance, which could be maintained, would allow increased and more constant flushing of the lake.

Scope of work:

- Dredging of a 1050m long by 100m wide channel.
- Formation of a sand island within the entrance providing a compensatory bird roosting habitat.
- Use of 200,000m3 of dredged sand for Warilla Beach nourishment.
- Completion of all survey activities associated with the works including set out, calibration and compliance surveys.

Challenges:

- Ensuring all works were carried out in an environmentally sensitive manner.
- Guaranteeing that the many flora and fauna in the lake Illawarra area were protected
- Working in highly visible public areas and ensuring the community’s needs were met.
- Working in the high current area of the lakes entrance channel.

<table>
<thead>
<tr>
<th>Dredge</th>
<th>Nu-Endeavour – Cutter Suction Dredge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>34.5 m</td>
</tr>
<tr>
<td>Gross Weight</td>
<td>220 tonne</td>
</tr>
<tr>
<td>Pipe Dia.</td>
<td>450 mm</td>
</tr>
<tr>
<td>Digging Depth</td>
<td>2.5 – 15.0m</td>
</tr>
</tbody>
</table>
Project: **Moura Mine – Tailings Dredging**

Principal:
Coal Recoveries

Location:
Moura, Qld, Australia

Neumann’s Nu-Endeavour was chosen to reclaim coal tailings from the Moura 2C pit.

These tailings were processed to recover the fine coal lost in earlier operations and it was part of a program to empty the pit to enable ongoing mining underground from the pit floor.

The dredge was called upon to produce 450 tonnes per hour of coal tailings, which were pumped distances of up to 2.5km to the processing plant. As the pit was some 45m deep, the end of the job necessitated pumping a vertical cliff face of some 30m to the booster station located at the top of the cliff.

The operation was on a 24 hour, 7 day per week basis and the coal tailing in various places were interspersed with some “liquorice” (a very fine type of coal tailings which bind together like plastcine). On several occasions the dredge was also called upon to dredge through rocky clay shale which were embankments put across the pit during the filling process.

Outcome
The outcome for the dredging operation was positive for all Stakeholders. The successful completion of this project allowed the mine to continue its operation with renewed capacity in the tailings pit. The dredging was completed on time and within budget.

Dredge

| Nu-Endeavour – Cutter Suction Dredge |
|---|---|---|---|
| **Length** | 34.5 m | **Gross Weight** | 220 tonne |
| **Pipe Dia.** | 450 mm | **Digging Depth** | 2.5 – 15.0m |
The Broadwater is part of the Nerang River system feeding into the Pacific Ocean on the Gold Coast. The project involved widening and maintenance of the main navigation channel with the dredged material being used for beach nourishment along the northern beaches of the Gold Coast.

The project involved dredging of 1,200,000 m³ of sand and pumping this material up to 6.5 km to form the design profile along the northern Gold Coast beaches. This required our Cutter Suction Dredge the Nu Bounty, 3 booster stations, 6.5 km of pipeline, associated workboats and pipe handling equipment.

The main navigation channel is approx. 2.5 km long and 100 metres wide and the beach nourishment zone was 3 km long and approximately 50 metres wide. The operation was undertaken on a 24 hour/day basis to meet the required project programme.

This coupled with the requirement for the pipeline to be located along the beach in front of some of the most exclusive areas of the Gold Coast required strict control over the dredging activities, particularly noise and lighting.

Challenges:
- Working in a main navigation channel which is 1 of the busiest in Australia.
- Pumping material onto beaches such as Main Beach and Surfers Paradise Beach whilst minimising the disturbance to the public.
- Working at night within only a few metres of noise sensitive areas.
- Ensuring that the integrity of a pipeline and dredging system that crossed parks, dunal systems and under roadways was not compromised.
Water Pumps

<table>
<thead>
<tr>
<th>Pump</th>
<th>Installed Power Kw</th>
<th>Pump Size in mm</th>
<th>Head Capacity and Flowrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>BST010</td>
<td>1500</td>
<td>450</td>
<td>85 metres @ 550 L/sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>75 metres @ 1000 L/sec</td>
</tr>
<tr>
<td>BST009</td>
<td>1000</td>
<td>450</td>
<td>85 metres @ 400 L/sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>75 metres @ 800 L/sec</td>
</tr>
<tr>
<td>BST006</td>
<td>900</td>
<td>450</td>
<td>90 metres @ 400 L/sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>75 metres @ 750 L/sec</td>
</tr>
<tr>
<td>BST005</td>
<td>450</td>
<td>450</td>
<td>35 metres @ 400 L/sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 metres @ 800 L/sec</td>
</tr>
<tr>
<td>Floating Water Pump</td>
<td>200</td>
<td>400</td>
<td>25 metres @ 350 L/sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20 metres @ 500 L/sec</td>
</tr>
<tr>
<td>BST002</td>
<td>450</td>
<td>300</td>
<td>90 metres @ 250 L/sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82 metres @ 350 L/sec</td>
</tr>
</tbody>
</table>

This pump is currently in design phase

All Boosters can be land based or mounted on pontoons and floating.

We have built these pumping units in our workshop in SE Queensland. We would also be able to build new purpose built land based or floating units.

We have the following pipeline available

- 1200 metres of 500mm flanged steel pipeline
- 2000 metres of 450mm steel pipeline
- 2000 metres of 450mm HPDE pipeline
- 1500 metres of 400mm flanged steel pipeline

We would require approximately three (3) weeks for mobilisation of Water Pumps and Pipeline.
Management Systems

SCI QUAL INTERNATIONAL
OH&S Management System certified to
AS/NZS 4801:2001
REGN. Number 3343

SCI QUAL INTERNATIONAL
Quality Management System approved to
AS/NZS ISO 9001:2008
REGN. Number 3008

SCI QUAL INTERNATIONAL
Environmental Management System certified to
AS/NZS ISO 14001:2004
REGN. Number 3493

Contact Details

Should you require further information please contact

General Manager
Mr Bill Neumann
email: bill.neumann@neumann.com.au

Contracts Manager
Mr Gareth Brown
email: gareth.brown@neumann.com.au

Office Location
Building 20, 13 Nuban Street, Currumbin Qld 4223

Phone: +61 (0)7 5589 2746
Fax: +61 (0)7 5589 2775

email: neumann.contractors@neumann.com.au
Website: www.neumanncontractors.com.au